Overview of Polar Oceans

by Maria (Masha) Tsukernik

Masha Tsukernik Research Fellow, Monash University, Melbourne Australia

I am a "bipolar"
scientist, studying
changes in polar
atmosphere, oceans
and cryosphere
(snow and ice).
I am fascinated by
sea ice the most!

Overview

- ➤ Why are the polar regions important for global climate?
- ➤ What changes have been observed in polar oceans?
- > So what?

- > The Earth is heated unevenly
- > Polar regions are the "A/C" of the planet

- > The Earth is heated unevenly
- > Atmosphere and ocean are correcting imbalance

Atmospheric circulation in theory and practice

Thermohaline circulation in the ocean

1. Polar regions play a crucial role in the global atmosphere and ocean circulations

Sea ice, ice sheets, seasonal snow cover – all WHITE

- Ice albedo positive feedback
- Snow/ice surface reflects sunlight
- Dark ocean surface absorbs sunlight
- Once melt starts, it is amplified by the feedback loop

1. Polar regions play a crucial role in the global atmosphere and ocean circulations

2. Polar feedbacks (e.g. ice-albedo positive feedback) intensify changes that occur at the poles

Arctic Ocean

Best known for its ice cover

Average depth of Arctic Ocean: 1038 meters (3407 ft)

Deepest point in the Eurasian Basin: 5450 meters (17,881 ft).

Entire basin: 1.5 times the size of the contiguous US

What changes have been observed?

Arctic sea ice

This animation illustrates how sea ice (in grey) grows in winter

The seasonal cycle and local weather still play a big role in day-to-day sea ice changes!

What changes have been observed?

What changes have been observed?

- > Accelerated melt in Greenland
- Moulins and water lubrication

GLACIOLOGICAL FEATURES OF A MOULIN

Antarctica: frozen solid

+0.05

+0.1

-0.1

-0.05

What changes have been observed?

This animation shows a collapse of Larsen B ice shelf in February 2002 – it was the first time in history ice shelf collapse was monitored

NSIDC

Ice shelf collapse

http://nsidc.org/news/press/20080325_Wilkins.html

Summary of observed changes

> Arctic sea ice cover in summer is decreasing

> Greenland glaciers are melting at accelerated rate

> Ice shelves around Antarctica are collapsing

So what?

Arctic sea ice – faster then forecast

- More energy from the Sun will be absorbed
- Erosion, storm surge, changes in salinity-driven circulation
- ➤ Decreasing habitat for Arctic animals
- > No direct increase in sea level (sea ice is floating)

Accelerated ice loss in Greenland and Antarctica:

- > Polar regions are fascinating
- New data and new discovery awaits

➤ What happens at the poles affects us all

Potential sea level rise

East Antarctica: 64.8m

West Antarctica: 8.06m

Antarctic Peninsula: 0.46m

Greenland: 6.55m

Other glaciers: 0.45m

TOTAL: 80.32 m

USGS

Thank you!

Trivia

Most of the world's salt water is in the oceans.

On which continent is most of the world's fresh water?

- Africa
- Antarctica
- Asia
- Australia
- _ Europe
- North America
- South America

Trivia

What will happen to sea level rise if the summer Arctic sea ice disappears?

Trivia

At which location would you be at the highest elevation above sea level?

- Base of Vail Ski Resort
- _ Highest point in Australia
- _ Highest point east of the Mississippi
- South Pole

Arctic vs. Antarctic sea ice

Summary of differences between Arctic and Antarctic sea ice characteristics		
	Arctic	Antarctic
Average Maximum Areal Extent	15,000,000 km² (9,320,568 mi²)	18,000,000 km² (11,184,681 mi²)
Average Minimum Areal Extent	7,000,000 km² (4,349,598 mi²)	3,000,000 km² (1,864,114 mi²)
Typical Thickness	~ 2 m (6 ft)	~ 1 m (3 ft)
Geographic Distribution	Asymmetric	Symmetric
Snow Thickness	Thinner	Thicker
Trend, 1979-2008	Significant decrease of 4.1% (~500,000 km²; 193,000 mi²) per decade	Small increase of 0.9% (~100,000 km²; 42,000 mi²) per decade

http://nsidc.org/seaice/characteristics/difference.html

Arctic vs. Antarctic sea ice

http://nsidc.org/arcticseaicenews/

Sea ice and salinity in the Arctic

