

Welcome to PolarConnect

with Chantelle Rose and the Winter Sampling 2011 PolarTREC Expedition

Wednesday 7 December 2011

9:00 am AKST (10:00am PST, 11:00am MST, 12:00pm CST, 1:00pm EST)

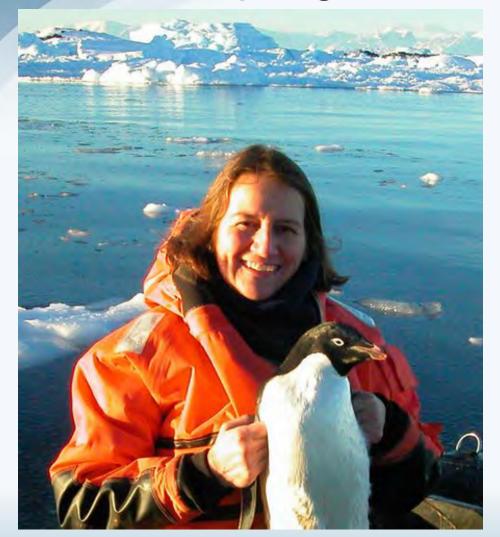
Please note:

- Participant using the telephone can mute/unmute by pressing *6 on the phone.
- Today's event will be recorded and archived.

Participant Introductions

When called, please state your:

- ✓Name
- ✓ School / Institution
- The number of students and adults participating with you in the same location



What is PolarTREC?

PolarTREC is a professional development experience in which K-12 teachers are paired with researchers for 2-6 week research experiences in the polar regions.

From 2010-2013, nearly 50 teachers from around the United States will join scientists in the Arctic and Antarctica to learn about science, the polar regions, and to share what they have learned with their students and communities.

Winter Sampling - The Team

Dr. Carin Ashjian, Woods Hole Oceanographic Institution

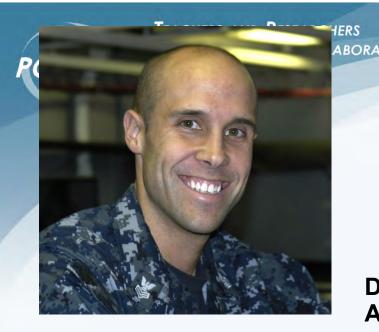
Bob Campbell, University of Rhode Island

Steve Okkonen, University of Alaska, Fairbanks www.polartrec.com POLAR

TEACHERS AND RESEARCHERS EXPLORING AND COLLABORATING

Donna Van Kueren, University of Rhode Island

Celia Gelfman, University of Rhode Island


Joel Llopiz, Woods Hole Oceanographic Institution

Phil Alatalo, Woods Hole Oceanographic Institute

Kristina Terpis, University of Rhode Island www.polarfrec.com

David Leech, University of Alaska

Chad McLaren, National Ice Center

Krista Longnecker, Woods Hole Oceanographic Institution

Sam Laney, Woods Hole Oceanographic Institution

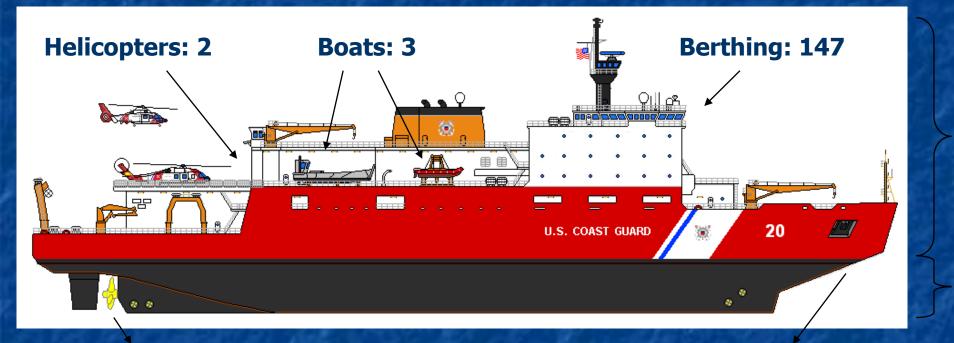
Steve Roberts, UCAR

David Pavlik, US Fish and Wildlife

Eric Arnesen, Oregon State University

Dean Stockwell, University of Alaska

Toby Martin, Oregon State University artrec.com



Captain of the USCG Cutter Healy, Captain Beverly Havlik and Executive Officer Commander Gregory Tlapa

HEALY statistics

Length: 420 ft

Fastest Speed: 17 kts

Icebreaking: 4.5 ft at 3 kts 8 ft Backing & Ramming

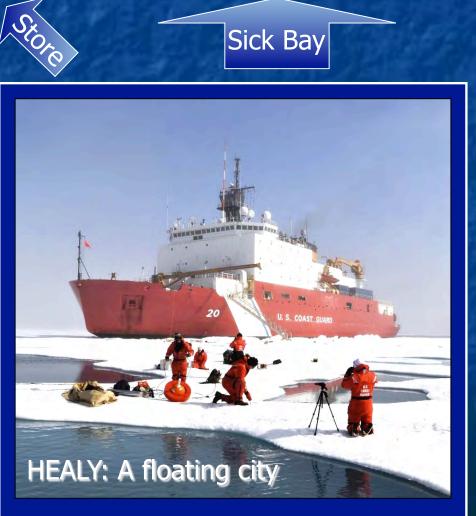
Height:

135 ft

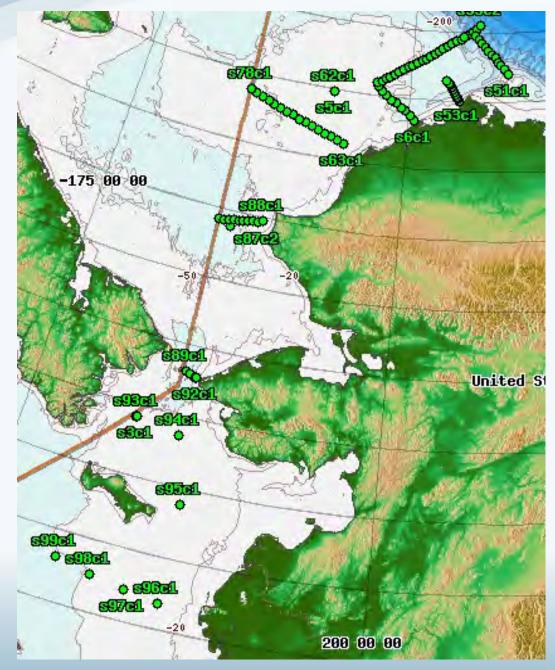
Draft:

30 ft

Weight: 16,000 long tons (36 million pounds)


Sick Bay

Power plant



POLAR

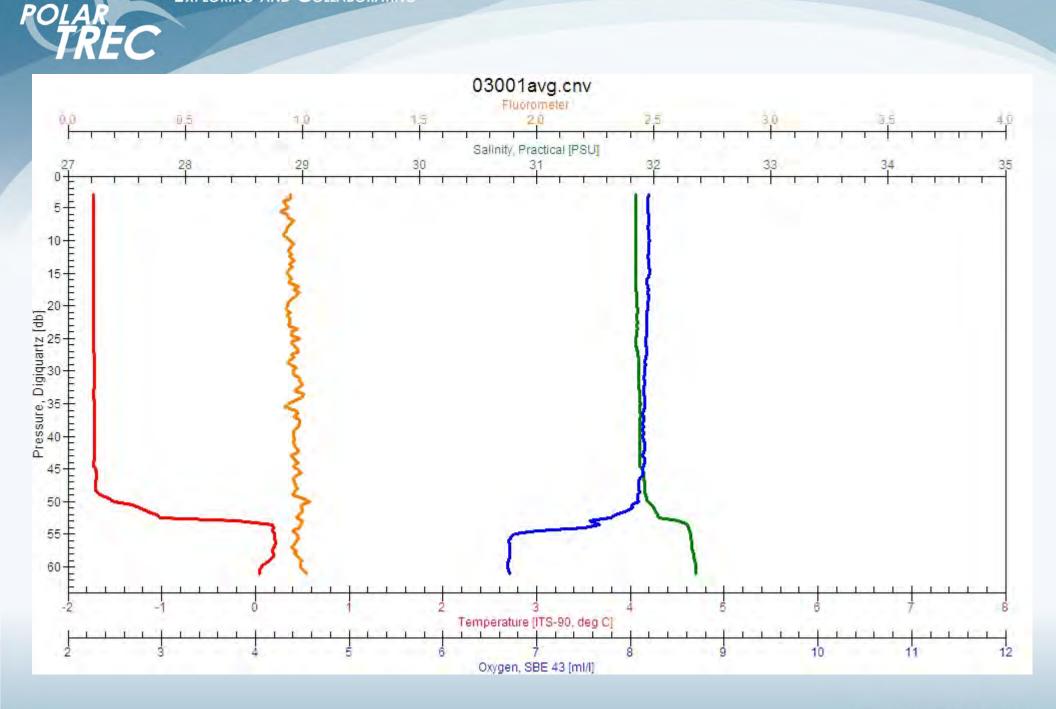
Why go to the Arctic in Winter?

- 0.25 inch Copepod Copepods and Krill Arctic Food Web
- We know very little about the biology and physical oceanography of the Bering and Chukchi Seas in winter.
- We are particularly interested in the large copepods *Calanus* and krill – where are they during the winter? In other regions, these animals spend the winter in deeper water – deeper than the Chukchi and Bering shelves.
- Our poor understanding of the winter ecology of these animals hampers our ability to predict and model the impact of climate change in the Arctic ecosystem.

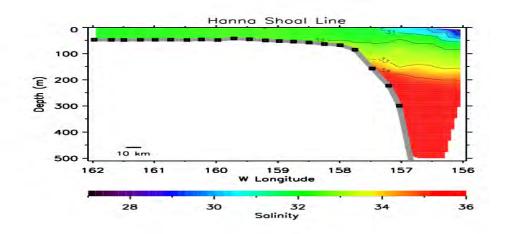
TEACHERS AND RESEARCHERS EXPLORING AND COLLABORATING Where we have been so far

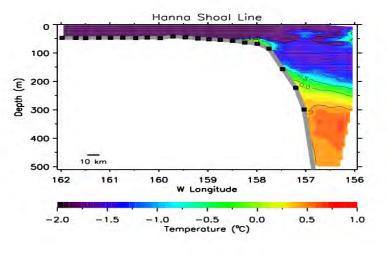
Achievements so far

Through December 3

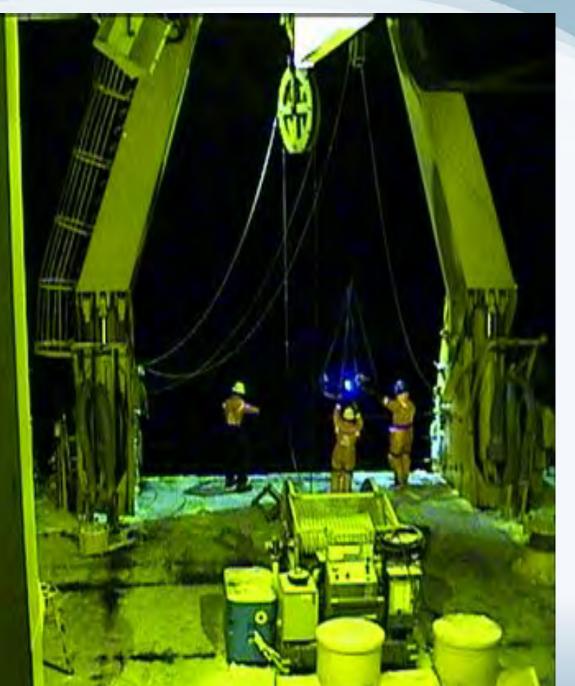

	Number
Stations	99
Events (e.g., CTD, VPR, Bongo)	321
CTD Casts	100
VPR Casts	89
Bongo Tows	60
Ring Net Tows	47
Ice Collections	14
Multinet Tows	10
Mooring Deployments	1

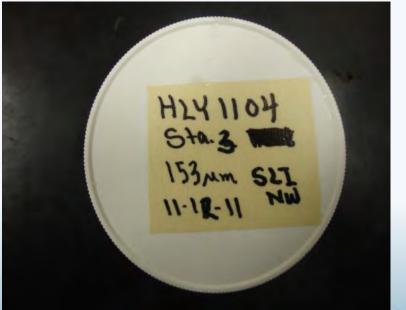
What We Have Been Sampling


- Water temperature, saltiness, temperature and currents
- Chlorophyll (phytoplankton), microzooplankton and zooplankton (Calanus copepods, krill abundances)
- Bird and Mammal distributions
- Dissolved Organic Matter
- As well as conducting some experiments with the animals we have collected



Hannah Shoal Salinity and Temperature

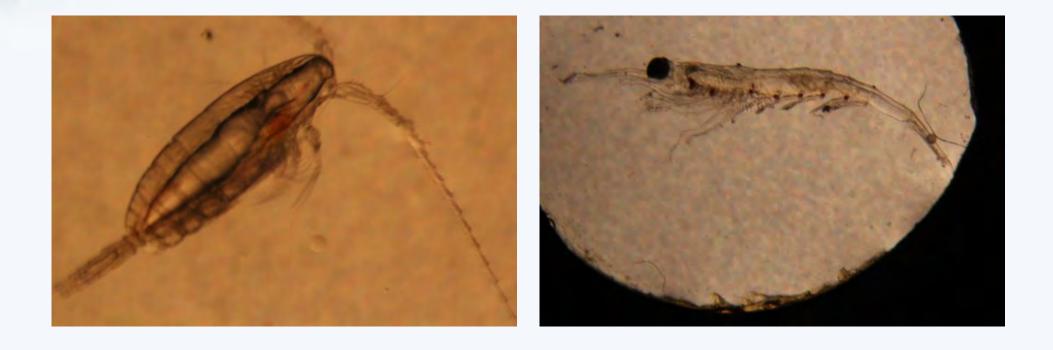

Samples from the Nisken Bottles



Bongo Net Samples

artrec.com

Density Experiment with Polystyrene



GPS	06:31:04		True Wind	Barometr	ic Prs Humic	
LAT 72	18.749N		360	990	10/10 40	60 30- 60 50-
LON 155	57.233W	Chine.		8980	1020 2 -20	80- 20-
COG	253.9	(III)		970	1030	100
SOG	0.7		180	Sam	0	100 10-
			M	S 1009.	3 71	.7 % -24.87
Gyro	256.4	Ó		milliba		-12.76
Depth Sndr	10/3 0	Precipitatio	20.1 KNTS	1012	Prs (Sea Level) 5	Wind Chill -40.02 C
Mon 21-Nov-11 0	6:31:03	-99.0	nm			-40.04 F Valid if Wind > 3 KNT and Air Temp < 10C
Mon 21-Nov-11 0 Air Temp		-99.0		3.2	Sea Temp	Valid if Wind > 3 KN1
and in the solution of the solution of	-2 100	-99.0 24.9 PAR 29.3 SWB	W/M2	0.0	TSG Temp	Valid if Wind > 3 KNT and Air Temp < 100 -1.55 -1.28
Air Temp Baro Pres BaroP SL	-2 100 101	-99.0 24.9 PAR 29.3 SWR 12.5 LWR	W/M2 W/M2	0.0 277.5	TSG Temp Salinity PSU	Valid if Wind > 3 KN and Air Temp < 100 -1.55 -1.28 29.45
Air Temp Baro Pres BaroP SL Rel Humidi	-2 100 101 101	-99.0 24.9 PAR 29.3 SWB 12.5 LWR 71.7 BP	W/M2	0.0	TSG Temp Salinity PSU Snd Velocity	Valid if Wind > 3 KN and Air Temp < 100 -1.55 -1.28 29.45 1435.66
Air Temp Baro Pres BaroP SL Rel Humidi Dew Pt	-2 100 101 101 102 -28	-99.0 24.9 PAR 09.3 SWR 12.5 LWR 11.7 BP 3.05	W/M2 W/M2 Temp	0.0 277.5 -17.0	TSG Temp Salinity PSU Snd Velocity Oxy Sat	Valid if Wind > 3 KN and Air Temp < 100 -1.55 -1.28 29.45 1435.66 8.62
Air Temp Baro Pres BaroP SL Rel Humidi Dew Pt Brdg_AirTe	-2 100 101 101 101 101 101 101 101 101 10	-99.0 24.9 PAR 09.3 SWR 12.5 LWR 71.7 BP 3.05 1.15 EM1	W/M2 W/M2 Temp 22	0.0 277.5 -17.0 INOP	TSG Temp Salinity PSU Snd Velocity Oxy Sat Oxygen m/l	Valid if Wind > 3 KN and Air Temp < 100 -1.55 -1.28 29.45 1435.66 8.62 7.866
Air Temp Baro Pres BaroP SL Rel Humidi Dew Pt Brdg_AirTe Bow RelWD	-2 100 101 ty 7 -28 emp -24 13	-99.0 24.9 PAR 09.3 SWR 12.5 LWR 71.7 BP 3.05 1.15 EM1 35.0 Knu	W/M2 W/M2 Temp	0.0 277.5 -17.0	TSG Temp Salinity PSU Snd Velocity Oxy Sat Oxygen m/1 Fluromtr ug/1	Valid if Wind > 3 KN and Air Temp < 100 -1.55 -1.28 29.45 1435.66 8.62 7.866 0.2
Air Temp Baro Pres BaroP SL Rel Humidi Dew Pt Brdg_AirTe	-2 100 101 ty 7 -28 emp -24 13	-99.0 24.9 PAR 09.3 SWR 12.5 LWR 71.7 BP 3.05 1.15 EM1 35.0 Knu 19.6	W/M2 W/M2 Temp 22 idsen	0.0 277.5 -17.0 INOP 1023.0	TSG Temp Salinity PSU Snd Velocity Oxy Sat Oxygen m/l Fluromtr ug/l Flow LPM	Valid if Wind > 3 KN and Air Temp < 100 -1.55 -1.28 29.45 1435.66 8.62 7.866 0.2 2.6
Air Temp Baro Pres BaroP SL Rel Humidi Dew Pt Brdg_AirTe Bow RelWD Rel WS KTS	-2 100 101 101 .ty 7 -28 emp -24 13	-99.0 24.9 PAR 09.3 SWR 12.5 LWR 71.7 BP 3.05 1.15 EM1 35.0 Knu 19.6 PCC	W/M2 W/M2 Temp 22 idsen	0.0 277.5 -17.0 INOP	TSG Temp Salinity PSU Snd Velocity Oxy Sat Oxygen m/1 Fluromtr ug/1	Valid if Wind > 3 KN and Air Temp < 100 -1.55 -1.28 29.45 1435.66 8.62 7.866 0.2 2.6
Air Temp Baro Pres BaroP SL Rel Humidi Dew Pt Brdg_AirTe Bow RelWD Rel WS KTS Mid RelWS	-2 100 101 101 101 101 101 101 101 101 10	-99.0 24.9 PAR 09.3 SWR 12.5 LWR 1.7 BP 3.05 4.15 EM1 35.0 Knu 19.6 PCC 7.9	W/M2 W/M2 Temp 22 idsen	0.0 277.5 -17.0 INOP 1023.0	TSG Temp Salinity PSU Snd Velocity Oxy Sat Oxygen m/l Fluromtr ug/l Flow LPM Prs PSI	Valid if Wind > 3 KN and Air Temp < 100 -1.55 -1.28 29.45 1435.66 8.62 7.866 0.2 2.6 22.3
Air Temp Baro Pres BaroP SL Rel Humidi Dew Pt Brdg_AirTe Bow RelWD Rel WS KTS	-2 100 101 ty 7 -28 emp -24 13 5 1 M/S 13	-99.0 24.9 PAR 09.3 SWR 12.5 LWR 71.7 BP 3.05 1.15 EM1 35.0 Knu 19.6 PCC 7.9 38.4	W/M2 W/M2 Temp 22 idsen	0.0 277.5 -17.0 INOP 1023.0	TSG Temp Salinity PSU Snd Velocity Oxy Sat Oxygen m/l Fluromtr ug/l Flow LPM	Valid if Wind > 3 KN and Air Temp < 100 -1.55 -1.28 29.45 1435.66 8.62 7.866

Animals of Special Interest

Other Interesting Sights

Questions

To Ask a Question:

- \checkmark Raise your hand with the "hand button"
- \checkmark Type your question in the text chat box
- ✓ Speak loud and clear and directly into the phone to ask your question.

Teachers: Join PolarTREC!

www.polartrec.com/about/join

Every teacher can participate in different ways:

- Following Expeditions
- Participate in PolarConnect Events
- Join the Polar Education Email List
- Take Online Professional Development Courses
- Become a PolarTREC Teacher!

Upcoming Events

Watch for and register for upcoming events at <u>www.polartrec.com!</u>

Join Michelle Brown for a **PolarConnect** event on Friday, 9 December 2011 8:45am AKST [9:45am PST, 10:45am MST, 11:45am CST, 12:45am EST]

Thank You!

An archive of the event will be available shortly. http://www.polartrec.com/polar-connect/archive

