TEACHERS AND RESEARCHERS EXPLORING AND COLLABORATING

Welcome to PolarConnect

Permafrost and Community

With PolarTREC Educator Allyson Woodard & Team Researchers Dr. Alexander Kholodov, & Dr. Santosh Panda

February 28, 2019

www.polartrec.com

Getting to Know Adobe Connect

Teachers and Researchers Exploring and Collaborating

Participant Introductions

In the Chat box, please introduce yourself by typing in your:

√Name

\checkmark School or Institution

✓ The number of students and adults participating with you in the same location

TEACHERS AND RESEARCHERS EXPLORING AND COLLABORATING

What is PolarTREC?

- Since 2004, the Arctic Research Consortium of the United States (ARCUS), a non-profit organization, has been administrating the PolarTREC Program.
- PolarTREC is professional development for K-12 teachers. They are paired with researchers for 2-6 week research experiences in the polar regions.
- Over 150 teachers from around the United States have joined scientists in the Arctic and Antarctica to learn about science, the polar regions, and to share what they have learned with their students and communities.

25 Years of Connecting Arctic Research www.arcus.org Teachers and Researchers Exploring and Collaborating

Questions

During the Presentation:

• Type your question in the text chat box

At the End of the Presentation, two options:

- 1. Type your question in the text chat box, or
- 2. Raise your hand with the "hand button".
- PolarTREC staff will call on you and activate your microphone.
- Speak loud and clear, directly into the computer microphone or the phone to ask your question.

PERMAFROST ON ALASKA

Permafrost underlies ~80% of Alaska (Jorgenson et al. 2008). Permafrost distribution can be classified as continuous (>90% of land area underlain by permafrost), discontinuous (90% – 50%), sporadic (50% – 10%), or isolated (<10%) (Ferrians 1965).

OBSERVATION SITES CHARACTERISATION

Totally the network includes 20 observation points. In 2016 we instrumented 12 sites and in 2017 – 8 more. Thirteen sites are located at Telida village and 7- at Nikolai. Eleven of them (6 at Telida and 5 at Nikolai) represent the permafrost area.

Site ID	Ecotype	Organic layer		Canopy	Active layer	
		Thickness, cm	Composition	coverage	Thickness, cm	Туре
NS	Young low density black spruce forest	>40	Alive moss (2 cm), fibrous, peat	-	90	Thaw depth
TV1	Tall shrubs / young deciduous forest	17	Alive vegetation (2 cm), humus	-	>135	Freezing depth
TV2	Deciduous forest	4	Humus, <u>ash!</u>	17	>100	Freezing depth
TV3	Young low density black spruce and larches forest	>50	Alive moss (3-4 cm), fibrous, peat	-	60	Thaw depth
TV4	Medium density mixed boreal forest	25	Alive moss (4 cm), fibrous, <u>ash!</u>	48	>110	Freezing depth
TV5	Low density black spruce forest	~50	Alive moss (5 cm), peat	17	50	Thaw depth
TV6	Medium density black spruce forest	25	Alive moss (3 cm), fibrous, peat	40	80	Thaw depth
TV7	Mixed boreal forest	23	Alive moss (~5 cm), fibrous	28	>100	Freezing depth
TV8	Low density black spruce forest	>50	Alive moss (8 cm), peat	11	50	Thaw depth
TV9	Medium density deciduous forest	12	Humus, <u>ash!</u>	51	>100	Freezing depth
TV10	Low density black spruce forest	50	Alive moss (5 cm), fibrous, peat	26	70	Thaw depth
TV11	Low density black spruce forest	>30	Alive moss, fibrous, peat	4	80	Thaw depth

MAP OF THE RESEARCH AREA AND OBSERVATION POINTS LOCATION

Intensive research area Tripods equipped with air temperature/relative humidity sensor, 2 soil moisture and 4 temperature sensors. Blue installed in 2016, red - 2017.

 4-channel data logger with temperature
sensors. Blue - installed in 2016, red - 2017.

AIR AND SURFACE TEMPERATURE DYNAMICS IN 2016-17

MEAN ANNUAL TEMPERATURE AT THE GROUND/MOSS SURFACE WITHIN DIFFERENT ECOTYPES IN 2016-2017

MEAN ANNUAL TEMPERATURE AT THE BOTTOM OF ACTIVE LAYER WITHIN DIFFERENT ECOTYPES IN 2016-2017

TEMPERATURE DYNAMICS AT THE BOTTOM OF ACTIVE LAYER

Temperature dynamics at the bottom of active layer at the "coldest" site.

EQUIPMENT

Summary

- Sustainable monitoring is not an ultimate solution of the adaptation to the environmental changes, but true coproduction of knowledge through a trusted and equal partnership between indigenous communities and scientist is a powerful tool can help make rural communities more resilient.
- Mechanisms of bringing scientific results back to communities are still underdeveloped. It is a greatest problem of community-based observations

Study Area: Telida Village, Alaska

Telida village is located on the Swift Fork, 25 miles west of Denali National Park

Area: 100² Miles Elevation: 174 – 375 m asl

Climate: Continental Summer Temperature: 5 – 32 °C Winter Temperature: -48 – -18 °C 153°20'W

153°10'W

Integrating field observation, remote sensing, and temperature modeling

Temperature Monitoring Stations

Field Observations

Land Cover	% Cover	Thaw Depth [cm] Aug. 10-13, 2017	+Avg. temp [C] 08/2016 - 08/2017	Snow Depth [cm]	Snow density [g/cm ³]
Closed Spruce	21.6	44.4±6.0	+1.2 -0.2	50±6	0.16
Open Spruce	37.6	40.3±6.4	-0.6	51±4	0.14
Mixed Forest	14.8	45.3±4.0	+1.6	48±6	0.18
Deciduous and Tall Shrub	24.5	41.6±4.3	+1.8	56±5	0.20
Ericaceous Shrub	1.4	52.0±7.0	-0.13	48±6	0.19

*Average mineral soil temperature*Near-surface permafrost

Remote Sensing

153°20'W 153°10'W 5 km

63°25'N

63°20'N

PlanetScope Image:

Four bands: Blue, Green, Red, and Near IR Spatial Resolution: 4 m Acquisition: 6 Aug. 2017

Landcover Mapping

- Dark Object Subtraction
- Masked out water bodies using NDVI thresholding
- Created a data composite: 4 image bands NDVI layer, NIR mean NIR variance
- Mapped landcover using Maximum Likelihood supervised classification
- Overall Accuracy: 86%

Ground Temperature Modeling

Geophysical Institute Permafrost Laboratory (GIPL) 1.0

Model Input Data

Climate input:

mean monthly air temperature and monthly total precipitation 5-GCM composite RCP 8.5 Scenario (2016-2017) [Source: SNAP]

□ Future Decades 2030, 2040, and 2050

Ecosystem input:

Landcover Class

Soil Class

Organic layer thickness He Thermal diffusivity Therma

Heat capacity Thermal conductivity Water content **Snow Class**

Fresh snow density Maximum snow density

Modeled ground temperature at the bottom seasonal freeze-thaw layer

2016-2017

Near-surface Permafrost:

Present under 39% of the Study Area

Permafrost Temperature: 0 to -0.9 °C

Active Layer Thickness: <= 1.6 m

Summary

 Permafrost distribution around Telida village is <u>sporadic</u> (permafrost underlies ~ 39% of the study area)

• Permafrost surface temperature is -1 °C or warmer

• Permafrost is generally present under Open Spruce, and Ericaceous Shurb landcover, and patchy under Closed Spruce landcover.

About me: Allyson

Exhibit developer at Oregon Museum of Science and Industry (OMSI) in Portland, OR

Under the Arctic: Digging into permafrost

Teachers and Researchers Exploring and Collaborating

Join PolarTREC!

www.polartrec.com/about/join

Everyone can participate in different ways:

- Follow Expeditions
- Participate in PolarConnect Events
- Join the Polar Education Email List
- Check out the great resources
- Become a PolarTREC Teacher or Researcher
- Become a member of ARCUS

www.polartrec.com

TEACHERS AND RESEARCHERS EXPLORING AND COLLABORATING

Thank You!

An archive of the event will be available shortly.

http://www.polartrec.com/polar-connect/archive

25 Years of Connecting Arctic Research www.arcus.org

www.polartrec.com

Comparison of observed ground temperature with modeled ground temperature

Station	Days	Sensor Depth [m]	Modeled *SFTL [m]	Average Temp. [°C]	Modeled Temp. [°C]
TV1	332	1.35	1.86	1.85	0.67
TV2	357	0.80	1.84	2.57	0.72
TV3	357	0.75	0.98	-0.13	-0.16
TV4	360	1.10	0.95	1.23	0.36
TV5	255	0.55	0.56	-1.12	-0.66
TV6	354	0.90	1.02	-0.16	0.34
τν7	350	0.90	1.00	0.83	0.42
TV8	353	0.58	0.56	-1.31	-0.82
TV9	356	1.00	1.30	1.65	0.12
TV10	353	0.75	0.57	-0.17	-0.71
TV11	353	0.80	0.57	-0.58	-0.71

*SFTL: Seasonal freeze-thaw layer thickness