

Continent: 5.4 million sq miles (2x the size of US)

Southern Ocean: 8 million sq miles

Coastline: 11,000 miles

| Coastal types around Antarctica (Drewry, 1983)    |           |  |
|---------------------------------------------------|-----------|--|
| Туре                                              | Frequency |  |
| Ice shelf (floating ice front)                    | 44%       |  |
| Ice walls (resting on ground)                     | 38%       |  |
| Ice stream/outlet glacier (ice front or ice wall) | 13%       |  |
| Rock                                              | 4%        |  |
| Total                                             | 100%      |  |



# Glaciers, Ice sheets, Ice shelves



# Light in the Antarctic

### Strong seasonality due to earth's tilt





- •24 hr sunlight in summer
- •24 hr darkness in winter
- Rapid changeover

#### Seasonal sea ice is a dominant feature of the Southern Ocean



FEB
Monthly Average Polar Sea-Ice Concentration
(1987-91; SSMR,SSM/I)

AUG

# Multiple habitats for primary producers





# Sea-ice algal productivity

40-70 million metric tons (Tg) C yr-1

5% of total productivity of Southern Ocean

Food source for higher trophics

Mediators of chemical transformations



## Amundsens/Bellinshausen

-7% per decade

#### Ross Sea sector:

+5% per decade

## Consequences?

- Ice biota
- Climate active gases
- Feedbacks



# OSO 2008-09:

# Controls on climate-active gases by Amundsen Sea ice biota















Patricia Yager Walker Smith Mark Dennett Jeff Peneston

Katarina Abrahamsson Melissa Chierici Agneta Fransson



## Climate active gases:

CO2, CH4, DMS, tropospheric ozone, Organohalogens

Source/sinks:

Autotrophy/Heterotrophy Gas solubility = f(brine)

# Organohalogens

| Compound name         | Chemical formula                   |  |
|-----------------------|------------------------------------|--|
| Iodomethane           | CH <sub>3</sub> I                  |  |
| Trichloromethane      | CHCl <sub>3</sub>                  |  |
| Tetrachloromethane    | CCl <sub>4</sub>                   |  |
| 1,1,1-trichloroethane | CH <sub>3</sub> CCl <sub>3</sub>   |  |
| Trichloroethene       | CHCl=CCl <sub>2</sub>              |  |
| Dibromomethane        | $CH_2Br_2$                         |  |
| Bromodichloromethane  | CHCl <sub>2</sub> Br               |  |
| Chloroiodomethane     | CH <sub>2</sub> CII                |  |
| 2-Iodobuthane         | CH3CHICH2CH3                       |  |
| Tetrachloroethene     | CCl <sub>2</sub> =CCl              |  |
| Dibromochloromethane  | CHClBr <sub>2</sub>                |  |
| 1-Iodobuthane         | CH2ICH2CH2CH3                      |  |
| 2-Iodopropane         | CH <sub>3</sub> CHICH <sub>3</sub> |  |
| Tribrommethane        | CHBr <sub>3</sub>                  |  |

Abrahamsson et al., 2004

# Organohalogen climate feedback:

First-year ice is a source of reactive bromine and other halogen species that during spring, in presence of cold and light, deplete tropospheric ozone, a potent greenhouse gas.



Abiotic production and biotic production

Loss of sea ice could reduce these compounds and lead to increased tropospheric ozone and more warming.





## Project Objective:

Determine quantitative relationships among sea-ice properties, organohalogen production/ degradation, CO2 fixation/ respiration, sea-ice microbiota composition, physiology, and activities.



# Major science questions under this overarching goal include:

- How does sea ice biology control gas concentrations in the ice?
- 2. What is the role of community composition and physiology?
- 5. How are community structure and gas flux related to the physical environment of the sea ice?

#### Our working hypotheses are:

- Composition and activities of sea-ice biota linked to the physical environment of the ice
- B) Organohalogen and DOC production positively correlated to algal biomass
- C) Organohalogen production a function of the composition of autotrophs present
- D) Physiological state, stoichiometric composition, and the photosynthetic capacity of the algae controls the biogenic production of organohalogens and the drawdown of CO<sub>2</sub>
- E) Heterotrophic halocarbon degradation driven by co-metabolism with other dissolved organic compounds
- F) Balance of autotrophy versus heterotrophy determines net production and destruction of trace gases. Sea ice fluxes of CO₂ and halocarbons will be inversely related.







## Drake's Passage



SOURCE: NASA World Wind



# Into the ice









A powerful icebreaker - shaped like the belly of a whale













We will use a Kovacs Ice Drill to collect 14-cm diameter ice cores





http://www.kovacsicedrillingequipment.com/photogallery.html









tea.armadaproject.org



We will photograph and describe the core, and then take its temperature

http://www2.fsg.ulaval.ca/giroq/now/Gallery/WorkatC.html



Once we remove the core, we will measure the thickness of the ice



http://www.arctic.noaa.gov/essay\_krembsdeming.html





http://www.arctic.noaa.gov/essay\_krembsdeming.html



Junge et al., 2001, Annals of Glaciology



then sealed into gas-tight sampling (Tedlar) bags







We will also use a Jiffy Ice Auger to drill a hole through the ice, big enough to send down our light meter and some sampling bottles

http://oceanexplorer.noaa.gov/explorations/o5arctic/logs/july21/media/seaice\_work.html





#### BRINE INVENTORIES

Carbonate system (MC, AF, PY)
Organohalogens (KA)
Dissolved organic carbon/nitrogen (PY)
Nutrients (?)

#### MELTED ICE CORE INVENTORIES

Chlorophyll a (WS)

Pigments (WS)

Particulate carbon/nitrogen/ phosphorus (WS)

EPS (PY)

Biogenic silica (WS)

Community composition (autotrophs and protists; MD)

Bacterial Abundance (PY, MD)

Bacterial community structure (PY)

#### MELTED ICE (INTO FSW) RATES / ACTIVITIES

Photosynthesis / Irradiance (14C-bicarb; WS)
Photosynthetic capacity (PAM-FRRF; WS)
Bacterial Production (14C-LEU), Respiration,
Organohalogen degradation (PY)

Same as above for underway surface seawater or Nisken water from 1 m





Kevin Bakker is a graduate student at UGA working on his Master Degree





Here's Tish all suited up in the "Rad Van"





A three-week experiment to measure effects of climate change



Sea ice algae is at the base of the food chain here

### Antarctic Krill



http://www.answers.com/topic/antarctic-krill

## Life in an icy world



Can you see the Snow Petrel in this picture?



Can you see the Snow Petrel?



Åke Wallin

A Cape petrel



Who makes these tracks?



Adelie Penguins

















Who says penguins can't fly?





Crabeater seals





We think this was a Leopard seal



Minke whale













Life onboard Oden was a lot like living in Sweden





The best thing about my room was the view out the window





We had "coffee time" twice a day - in addition to three meals

Santa Lucia Day Celebration

December 13







#### SWEDARP 2007/08 - Oden Southern Ocean

## Time change

On December 20 we will advance our clocks 16 hours.

At 04:00 (4 AM) in the morning the time will become 20:00 (8 PM) in the evening. Brunch will then be served at 23:30 (11.30 PM).

Next meal will be breakfast December 21 at 07:30 (7:30 AM).





Mount Erebus - an active volcano near McMurdo

# Amundsen Sea... Ross Sea... and then on to McMurdo Station

Punta Arenas: 53°S, 71°W Amudsen Sea McMurdo Ross Sea

McMurdo Station: 78°S, 168°E

We traveled more than 3000 miles!



"like driving across the US at 12 miles per hour" We were flown from the ship to McMurdo by helicopter







McMurdo Station - Scott's hut in the foreground



McMurdo supports about 1400 people during the summer months, and has a hospital and fire station



Our "shuttle" to the "airport"











...where we saw our first darkness in over six weeks



